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Medical image processing and analysis (also known as Radiomics) is a rapidly growing discipline that maps digital medical
images into quantitative data, with the end goal of generating imaging biomarkers as decision support tools for clinical
practice. The use of imaging data from routine clinical work-up has tremendous potential in improving cancer care by
heightening understanding of tumor biology and aiding in the implementation of precision medicine. As a noninvasive
method of assessing the tumor and its microenvironment in their entirety, radiomics allows the evaluation and monitoring of
tumor characteristics such as temporal and spatial heterogeneity. One can observe a rapid increase in the number of computa-
tional medical imaging publications—milestones that have highlighted the utility of imaging biomarkers in oncology.
Nevertheless, the use of radiomics as clinical biomarkers still necessitates amelioration and standardization in order to achieve
routine clinical adoption. This Review addresses the critical issues to ensure the proper development of radiomics as a bio-
marker and facilitate its implementation in clinical practice.
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Introduction

Medical images possess valuable information which can be har-

nessed through computer assisted interpretation. This technique,

termed radiomics, is a rapidly-emerging discipline with the goal

of extracting quantitative data from medical images to be used as

clinical decision support tools [1–3]. In the context of oncology,

information obtained from standard imaging modalities

[computed tomography scan (CT), magnetic resonance imaging

(MRI), and Positron emission tomography scan (PET)], usually

refers to simple traits such as gross shape, contrast enhancement,

and size. However, imaging information is much richer, and the

goal of radiomics is to extract high throughput quantitative fea-

tures, covering the fields of texture, advanced shape modeling,

and heterogeneity, to name a few. The increasing resolution

quality has led to three-dimensional (3D) image acquisitions

containing millions of voxels available for analysis, making the

development of radiomics a natural progression, as more data

necessitated increased computing capabilities to harness more

information.

Radiomics has immense potential to improve knowledge in

tumor biology and guide the management of patients at bedside

[4]. Medical image analysis allows tumor monitoring across

time, with images being routinely acquired throughout the

course of treatment. Thus, imaging biomarkers may be used for

and contribute to cancer detection, diagnosis, choice of thera-

peutic strategy, prognosis inference, prediction of response, and

surveillance. Tumors exhibit spatial heterogeneity and temporal

variation, recognized as major causes of treatment failure and

modulators of intrinsic tumor aggressiveness [5–7]. Imaging
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allows assessment of the entire tumor plus surrounding tissue—it

is not blind to global heterogeneity—as opposed to invasive nee-

dle biopsies that are limited by sampling site. Radiomics could

serve as a ‘virtual biopsy’ that would provide complementary in-

formation to, but not replace, conventional biopsies which re-

main vital in deep genomic analysis.

This review will systematically go through the radiomics pipe-

line, the significant milestones achieved in oncology, and future

perspectives for improvement. The aim is to increase the aware-

ness and interest of the oncology community to radiomics, de-

mystify the field for non-imaging experts, and engage the

community to be involved in its further development and adop-

tion in clinical practice. We will demonstrate the potential of

radiomics to advance precision medicine.

Radiomics pipeline

The process of radiomics consists of discrete steps: image acquisi-

tion and segmentation, feature extraction, statistical learning and

3D rendering (Figure 1).

Image acquisition and segmentation

Radiomics may be applied to different/multiple modalities, and se-

lecting the one(s) to investigate depends on several factors.

Radiomics quantitatively explores the distribution of signal inten-

sities within a region or volume of interest (ROI/VOI). The spatial

resolution of images varies, being around 1 mm for CT and MRI

and 4 mm for PET. ROIs that are too small (e.g. sub-centimeter

nodules) may not provide sufficient voxel information for analysis,

whereas ROIs that are too large may be impacted by tumor hetero-

geneity (e.g. large tumors often present hypoxia in their centers).

Standardization and calibration of non-ionizing procedures

(Ultrasound, MRI) are intrinsically more complex than techniques

based on photon detection (PET or CT) [8]. The minimal

concentration of a molecule that is detectable on PET is 10�12

moles compared with 10�3 moles for MRI, meaning that the for-

mer might be 109 more sensitive for in vivo molecular imaging.

Patient motion and respiration during acquisition affects the qual-

ity of reconstructed images; a CT is usually acquired in a few se-

conds whereas functional (MRI) or molecular (PET) imaging lasts

several minutes. Data might be extracted from retrospective

standard-of-care images, leading to large pool of patients.

However, acquisition parameters vary considerably, which can

introduce signal variations not due to biologic effects [8–10]. As

with other high throughput technologies such as genomics, the ag-

gregation of multiple datasets in radiomics can lead to substantial

unwanted effects on the data. In determining the inclusion criteria

for studies, an option is to have a large cohort in order to be less

sensitive to variations due to acquisition/reconstruction param-

eters, or have a small cohort with homogenous data.

Crucial in the process is correct delineation of ROIs to be

analyzed. Segmentations must be reproducible and reliable.

Automatic methods are preferable for precision and efficiency. It

has been proven that inter- and intra-observer variabilities are

lower in automatic versus semi-automatic versus manual delin-

eation [10–13]. However, semi-automatic delineation is usually

mandatory, since automated methods are feasible only if there

are strong signal differences between the lesion and the back-

ground. This is observed in PET and CT of pulmonary tumors,

and possibly in certain MRI sequences. Commonly, such as in

tumors surrounded by relatively homogenous normal structures,

an experienced physician is required to correct contours, entail-

ing computer-aided outline detection followed by manual

correction.

Currently, there are several open source platforms equipped

with automatic and semi-automatic contouring functions, such

as 3DSlicer (Growcut algorithm) [14], which have active online

support, and are continuously updated. Generated contours

should be stored in an easily utilizable format for analysis across

various platforms. Commonly used is DICOM-RTSTRUCT,
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Figure 1. The radiomics pipeline, showing the major steps: image acquisition and segmentation, feature extraction, three-dimensional (3D) rendering and statistical learning. Important to
note is that radiomics data is meant to be integrated and analyzed with clinical, pathologic, and –omics data to improve precision medicine.
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which enables data sharing within and outside of the radio-

therapy workflow, containing information on the images and

ROIs [15]. Other formats such as analyze [16] and NIfTI are also

used [17].

Feature extraction

Preprocessing. Raw imaging data need pre-processing to discrim-

inate the signal from the noise. One optional step is filtering the

signal within the ROI, which defines the frequencies to be utilized

for subsequent analysis [18]. The choice of filter is guided by the

nature of the imaging modality and tumor tissue. Another is the

discretization or resampling [19, 20] of signal intensities that par-

titions continuous voxel values to finite/nominal intervals called

bins. Techniques involve either absolute (using a fixed bin size)

or relative (using a fixed number of bins whose size depends on

the minimum and maximum values within the tumor) discret-

ization. The choice of method is crucial as extracted features vary

accordingly [21, 22]. Several studies [19, 20, 23] have shown that

absolute discretization results to features with better repeatability

and lower sensitivity to changes, with the added advantage of not

being volume dependent.

Radiomics features. Features may be classified into several catego-

ries. There are quantitatively extracted descriptors of size, shape,

and other radiologic terminologies which characterize the tumor

surface. First-order statistics are used to study the distribution of

voxel values without considering spatial relationships [24]; se-

cond-order statistics characterize spatial relationships between

voxels, initially described by Haralick [25] such as the co-

occurrence matrix (GLCM), gray-level run length matrix

(GLRLM) [26], gray-level size zone matrix (GLZLM) [27], and

the neighborhood gray-level different matrix (NGLDM) [28].

Filter grids such as Gabor and Fourier may be used both in the

pre-processing step and for extracting spatial or spatio-temporal

features [29, 30]. A limitation is that some extracted values are

dependent on the ROIs contoured.

The extracted features can be global (one value for the whole

ROI), or local (a value per image patch) when inhomogeneous

patterns are present in the image, where dimensionality signifi-

cantly increases if simple concatenation of local descriptors is car-

ried out. For this, more advanced frameworks explore compact

statistical representations based on coding structures/diction-

aries. When visual vocabularies and visual word weights are

learned jointly, performance can be improved, as shown in classi-

fication of breast tissue density in mammograms, lung tissue in

high-resolution CT, and brain tissue in MRI [31]. A more de-

tailed review on texture analysis methods focusing on microscopy

images of cells or tissues can be found in [32].

The stability and the accuracy of features should be confirmed

through the use of test–retest datasets; a good practice policy is to

eliminate features that prove to be unreliable in the test–retest.

To this end, several datasets are publicly available. Of note is the

RIDER [33] dataset, which allows validation of results in the

same set of patients with two scans taken 15 min apart.

Statistical learning

The impact of the high number of radiomics variables. The cur-

rent radiomics pipeline typically incorporates around 50–5000

quantitative features (p), and these are still expected to increase.

Meanwhile, the number of patients (n) in studies remains small,

leading to a situation where p� n, or the ‘curse-of-dimensionality’

[34]; resulting in a high probability of false positive results [35].

Adjustments for multiple comparisons (Bonferroni correction

[36]) and controlling the false discovery rate (Benjamini–

Hochberg [37]) are commonly utilized methods to address this.

Another issue is overfitting, which can be reduced by cross-

validation with independent training and validation datasets [34].

Several techniques of dimensionality reduction can be used to re-

duce the number of variables for analysis by exploiting statistical

correlations and data redundancy [38]. Unsupervised techniques

map the data through a linear (e.g. prinicipal and independent

component analyses) or non-linear (e.g. ISOMAP, locally linear

embedding) transformation in a lower-dimensional space, such

that information loss is minimized, whereas supervised techniques

select a subset of the original variables such that prediction accur-

acy is maximized. Feature selection can be carried out independ-

ently, before classification or regression, or be combined into a

single mathematical problem (e.g. Lasso, ElasticNet) [39].

Attention has to be given in the case of supervised learning and

small datasets to not overfit the data; feature selection should be

carried out externally to the cross-validation procedure to correctly

estimate the empirical error.

Promising machine learning approaches for prediction and
classification tasks. Machine learning approaches [40] such as de-

cision trees and random forests [41–46], support vector machines

[39, 47, 48] and more recently deep neural networks [49] appear

to be promising in the domain of medical image computing. The

recent increase of available annotated imaging data in public por-

tals expedited the use of these techniques. In particular, deep con-

volutional neural networks (CNNs) have been shown to excel at

learning a hierarchy of increasingly complex features directly

from raw data, alleviating the explicit extraction of low-order,

pre-defined features. In such frameworks, feature extraction and

selection are carried out jointly with classification within the op-

timization of the same deep architecture, thus performance can

be tuned in a systematic fashion. Common CNN schemes train

patch-level classifiers [50] that automatically locate discrimina-

tive regions and then aggregate local predictions. The learning

process is usually facilitated by pre-training using standardized

data followed by supervised training for fine-tuning.

Thus far, CNNs have been shown to excel in the detection

and classification of pulmonary nodules in large series of lung

CTs from the Lung Image Database Consortium (LIDC-IDRI)

[41, 43, 51]. A comparison in mortality prediction from chest

CTs [52] between (i) a unified deep learning framework (features

and classifier are automatically learned in a single optimization

process) and (ii) a standard multi-stage framework (pre-defined

radiomics features are introduced into a classifier), showed

increased accuracy of the deep learning framework by 2.5%–

12.5%. Similar concepts have been applied to mammograms for

breast cancer screening [53, 54].
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Three-dimensional rendering

The visualization of the entire tumor, commonly carried out in

diagnostic radiology, is possible through 3D rendering [55].

Radiomics takes this a step further through visualization and

assessment of tumor heterogeneity which provides invaluable

information in clinical oncology and in cancer research. For in-

stance, this can direct which intra-tumoral region is best to bi-

opsy for adequate samples. In radiotherapy dose painting,

rendering is instrumental in visualizing treatment-resistant re-

gions, facilitating dose escalation and consequently decreasing

normal tissue toxicity [56]. Theragnostic imaging [57], the use of

molecular/functional imaging to prescribe radiation distribution,

will benefit from radiomics features reflecting phenotypes associ-

ated with poor radio-responsiveness [58].

Significant milestones of radiomics in

oncology

Radiomics is substantial in oncology, not surprising given the

increased availability of and information in patient imaging data.

Oncologic imaging is a substantial part of a radiologist’s daily

workload. More than 128 million imaging examinations were

realized in the United States in 2015, greater than 60% of which

were CTs (Figure 2B); and an increase of >36% in use of

advanced imaging was seen from 2005 to 2015 [59], reiterating

the vast amount of available data. This section aims to depict the

impact of radiomics in each stage of cancer care, with tables out-

lining key details.

Advancements in the understanding of tumor
biology

Tumor heterogeneity. The extensive genetic and molecular land-

scape within tumors—tumor heterogeneity—is known to be spe-

cific to the malignant process. Intra-tumoral heterogeneity is

dynamic and is modified by therapeutic effects. Heterogeneity

may portend treatment resistance and poor outcomes due to the

emergence of resistant subclonal populations [60]. Through

quantitative serial analysis of imaging, both temporal and spatial

heterogeneities may be analyzed. In particular, texture analysis

is emerging as an effective method to quantify heterogeneity.

Table 1 displays some representative work. To illustrate, in CTs

of lung adenocarcinomas, entropies of the tumor core and

boundary regions were computed separately, with results show-

ing that a higher ratio between the two are associated with poorer

outcome [61]. Thus, this imaging phenotype may reflect distinct

traits such as necrosis in the core and proliferation in the periph-

ery. In PET, texture analysis showed that healthy lung tissues are

more homogenous than malignancies, and texture features dif-

ferentiated tumor histologies [20]. Similar studies on texture het-

erogeneity, with or without other feature classes, depict

quantitative imaging traits mirroring genomic and molecular

phenotypes [62–69].

Modeling of key oncogenic processes. Several biological processes

are known to be necessary components of oncogenesis [70, 71].

Various molecular biology techniques have been developed to

better appraise biological and genetic causes of these, and the

emergence of quantitative imaging analysis is a promising tool to

complement and enhance existing techniques.

A study in lung cancer used an angiogenesis-related marker in-

jected in specimens, and linear correlations were shown between

CT texture heterogeneity features and percentage of the tumor

stained for the marker [72]. In glioblastomas, the ‘contrast en-

hancement imaging phenotype’ was significantly associated with

tumor angiogenesis [64]. In breast cancers, certain computer

extracted imaging phenotypes of MRIs have been shown to dif-

ferentiate subtypes [62].

In lung cancers, multi-categorical quantitative imaging fea-

tures were shown to reflect tumor hypoxia [63, 66]. In the pre-

clinical setting, causal relationship between genetic changes and

imaging features was demonstrated by pre-imaging administra-

tion of doxycycline which induces hypoxic changes [73].

Clinically, these results may be helpful in identifying tumor re-

sistance and the need for intensified regimens.
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Figure 2. (A) Comparison of publications on radiomics and molecular biomarkers. (B) Trends in imaging utilization in the USA. CT, Computed tomography scan; MRI, Magnetic resonance
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Table 1. Advancements in the prediction of tumor phenotypes, genotypes, molecular subtypes through radiomics

Tumor type
and imaging
modality

Author,
year

Training/
validation
sets (N)

Extracted radiomics features Feature selection and
statistical learning

Biologic correlation
and relevance

Breast cancer

(TCGA-

TCIA dataset)

CE MRI

Li,

2016 [62]

T: 91 38 CEIPs (size, shape, morph-

ology, enhancement texture,

kinetic curve, enhancement-

variance kinetics)

Leave-one-case-out with step-

wise feature selection and

linear discriminant analysis,

logistic regression

CEIPs are able to predict

breast cancer molecular

subtypes (ER, PR, HER2Neu,

basal-like) with AUCs from

0.67 to 0.89.

Breast Cancer

(TCGA –TCIA

dataset)

MRI

Zhu,

2015 [74]

T: 91 38 radiomics features

(size, shape, morphology, en-

hancement texture, kinetic

curve, enhancement-variance

kinetics)

Linear regression, Benjamini–

Hochberg adjustment, affin-

ity propagation clustering

Landmark description of the

associations between radio-

mics features and somatic

mutations, CNVs, gene ex-

pression and miRNA.

Radiomic phenotypes cor-

related with key oncogenic

pathways such as DNA

replication.

Breast cancer

(TCGA –TCIA

dataset)

CE MRI

Mazurowski,

2014 [65]

T: 48 23 initial features:

4 geometric, 14 Haralick tex-

ture, 1 kinetic and 4 dynamic

Logistic regression analysis,

Bonferroni correction

Radiomics features have sig-

nificant association with the

luminal B breast cancer mo-

lecular subtype (P ¼ 0.0015)

NSCLC

PET

Orlhac,

2015 [20]

T: 48

V: phantoms

7 Textural indices (homogen-

eity, entropy, SRE, LRE, RLNU,

LGLZE, HGLZE);

SUV max and metabolic vol-

ume; 3 texture matrices (co-

occurrence, gray-level run

length and gray-level zone

length matrices)

Spearman correlations,

no adjustment for multiple

testing

Texture features differentiate

between benign and malig-

nant tissues, and between

different cancer histological

subtypes. The presence of

necrosis was significantly

different between squa-

mous and adenocarcin-

omas, unlike the T or N

stage.

NSCLC

CT

Ganeshan,

2013 [63]

T: 14 Low-order texture features

computed upon the pixel in-

tensity distribution. Laplacian

of Gaussian transformation,

spatial scale filters.

Linear mixed-effects model ap-

proach, Holm- adjustment

Texture features (standard de-

viation and mean value of

positive pixels) are associ-

ated with tumor hypoxia

[Glut1/pimonidazole] and

angiogenesis [CD34]

NSCLC

CT

PET

Gevaert,

2012 [66]

T: 26 153 computational image fea-

tures, 26 semantic image

features, and a PET SUV

Generalized linear regression

with lasso regularization

Image features associate with

publicly available gene ex-

pression pathways

(Hypoxia, KRAS pathway)

with accuracies of 59%–

83%

Colorectal

cancer

xenografts

CE CT

Panth, 2015,

(pre-clinical)

[73]

33 mice 625 radiomics features (inten-

sity, shape, texture, wavelet

features, Laplacian of

Gaussian features)

Intra-class correlation coeffi-

ciant rank, based on the 50%

top-ranked features

Radiomics features demon-

strate the causality be-

tween genomics changes

and imaging features

Glioblastoma

multiforme

CE MRI

Jamshidi,

2014 [67]

T: 23 (1) Infiltrative versus edematous

T2 abnormality, (2) degree of

contrast enhancement, (3)

necrosis, (4) supraventricular

zone (SVZ) involvement, (5)

mass effect, and (6) contrast-

to-necrosis ratio.

Resampling statistics, analysis

of variance, Pearson correl-

ation coefficient

Gene-to-trait associations were

found such as contrast-to-

necrosis ratio with

KLK3 and RUNX3; SVZ in-

volvement with the Ras onco-

gene family and the

metabolic enzyme TYMS; and

vasogenic edema with the

oncogene FOXP1 and PIK3IP1

Continued
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Further, radiomics phenotypes have been shown to correlate

with mRNA and protein expression in breast MRIs [74], alluding

to the underlying mechanisms of tumor invasion. In glioblast-

omas, peritumoral fluid attenuation inversion recovery MRI sig-

nal abnormalities were found to reflect genes and microRNAs

accounting for cellular migration and invasion [75]. In addition,

lymphocyte infiltration has been reflected in imaging features of

HER2þ breast cancers [76].

Radiomics features also appear to model tumor proliferation.

A landmark study in liver cancer demonstrated that the combin-

ation of 28 traits could reconstruct as much as 78% of transcrip-

tome variation, and were specifically associated with genes

Table 1. Continued

Tumor type
and imaging
modality

Author,
year

Training/
validation
sets (N)

Extracted radiomics features Feature selection and
statistical learning

Biologic correlation
and relevance

Glioblastoma

Multiforme

CE MRI

Diehn,

2008 [64]

T: 22

V: 110

10 binary imaging traits (en-

hancement, necrosis, mass

effect,T2 edema, cortical in-

volvement, SVZ involvement,

C:N ratio, contrast/T2 ratio,T2

edema, T2 heterogeneity)

Unsupervised hierarchical clus-

tering; Spearman rank-correl-

ation coefficient

Significant associations were

found between: angiogen-

esis and tumor hypoxia

with the contrast enhance-

ment imaging phenotype

(P ¼ 0.012); proliferation

gene-expression signature

and mass effect phenotype

(P ¼ 0.0017); EGFR protein

overexpression and con-

trast:necrosis imaging trait

(P < 0.002)

Glioblastoma

Multiforme

CE MRI

Zinn,

2011 [75]

T: 26

V: 26

Quantitative models of edema/

invasion, enhancing tumor,

necrosis

For imaging-genomic analysis:

Comparative Marker

Selection, Ingenuity Pathway

Analysis

Imaging traits associated with

upregulation of mRNA

involved in cellular migra-

tion/invasion (PERIOSTIN),

which was seen to correlate

with decreased survival (P

¼ 0.0008)

Soft tissue

sarcoma

CT

Hayano,

2015 [68]

T: 20 Low-order texture features

computed upon the pixel in-

tensity distribution. Laplacian

of Gaussian transformation,

spatial scale filters

Multi-variate Cox regression

model; no correction for

multiple testing

Tumor texture features are

associated with microvessel

density, VEGF, soluble VEGF

receptor-1, and overall sur-

vival, and the mean value

of positive pixels is an inde-

pendent prognostic factor

in multi-variate analysis (P

¼ 0.01)

Renal Cell

Cancer (RCC)

(TCGA–TCIA dataset)

CE CT

Zhu,

2016 [69]

T: 112 PADUA scoring system:

Exophytic, Longitudinal, Rim

location, Renal sinus, UCS,

Tumor size, Face location

Stratified according to PADUA

score; correlation of the

PADUA system and its radio-

logical features with miRNA

molecular subtypes GSEA,

Pearson metric

Imaging features of PADUA

scores may serve as mo-

lecular surrogates for RCC

diagnosis, prognosis and

personalized treatment of

patients with specific gen-

omic profiles. Higher

PADUA scores were signifi-

cantly associated with epi-

thelial to mesenchymal

transition pathways

(P < 0.001)

CT, computed tomography scan; MRI, magnetic resonance imaging; PET, Positron emission tomography; CE, contrast-enhanced; TCGA-TCIA, The

Cancer Genome Atlas-The Cancer Imaging Archive; CEIPs, computer-extracted image phenotypes; ER, estrogen receptor; PR, progesterone receptor;

CNVs, copy number variations; NSCLC, non-small cell lung cancer; SRE, short-run emphasis; LRE, long-run emphasis; RLNU, run length non-uniformity;

LGLZE, low gray-level zone emphasis; HGLZE, high gray-level zone emphasis; SUV, standardized uptake value; EGFR, epidermal growth factor receptor;

GSEA, gene set enrichment analysis; AUC, area under the curve; VEGF, vascular endothelial growth factor.
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involving cell proliferation [77]. In breast cancers, analysis of

TCGA-TCIA data revealed clear associations between radiomics

phenotypes and proliferation at the protein and gene expression

levels. Imaging phenotypes of increased tumor size were also

associated with P-cadherin expression, shown to correlate with

increased proliferation [74].

Better implementation of precision medicine

Precision medicine is an approach for disease treatment and

prevention that takes into account individual variability in

genes, environment, and lifestyle; integrating information from

multiple sources with the end goal of personalized management

[78]. In this section, some key radiomics applications are

described.

Diagnosis. One of the biggest challenges in oncology is the devel-

opment of accurate, cost–effective screening procedures. In the

National Lung Cancer Screening Trial (NLST), low-dose CTs in-

terpreted by radiologists have been shown to be beneficial in mor-

tality reduction in a cohort of 53 000 patients [79]. These however

exhibit high false-positive rates (>90%); wherein radiomics could

be effective in improving specificity. Using NLST data, patients

with screening-detected lung cancer were matched with subjects

with benign nodules. Accuracies of 80% and 79% were found for

predicting nodules that will become cancerous at 1 and 2 years, re-

spectively [42]. Using LIDC-IDRI patients with a total of 42 340 le-

sions (through data augmentation), deep convolutional

sequencers detected malignant nodules with diagnostic accuracy,

sensitivity, and specificity >75% [41]. Two studies [43, 80] with

914 and 1375 lesions, respectively, published promising results

with predictive performances ranging from 60% to 80%. Notably,

multi-scale CNNs attained 86.84% accuracy on classification with

automatic nodule detection and segmentation [43]. Other publi-

cations in lung carcinomas reveal similar findings [46, 81, 82].

Table 2 presents representative publications concerning diagnosis.

Staging and prognosis. Accurate staging determines the aggres-

siveness of therapeutic strategy and spells the difference between

curative and palliative treatments, requiring constant advance-

ments in imaging techniques to improve decision-making. In

colorectal carcinomas, for which liver metastases are frequent,

radiomics features extracted from unenhanced hepatic CT scans

showed texture abnormalities suggestive of metastases in appar-

ently disease-free areas [83]. This could streamline the staging

process and minimize treatment delays with the information

steering the clinician toward doing confirmatory examinations

for patients at risk. Plus, early detection of metastases may in-

crease chances of complete tumor eradication.

In prognostication, increased shape complexity in lung adeno-

carcinoma [61] was associated with poorer clinical outcomes.

Morphologically similar tumors by visual inspection turned out

to have large differences in quantitative parameters, denoting

that radiomics can supplement radiologists’ interpretations.

Another study [84] demonstrated that radiomics features are

prognostic for both distant metastasis and survival, and a radio-

mics signature significantly improves prognostication when

added to clinical data. Similar studies were published in colorec-

tal cancers [85, 86]. In a large cohort involving multiple datasets

with varying tumor types [4], differences in imaging phenotypes

showed clinical significance and impact on prognosis. These re-

sults were reiterated in a dataset of almost 900 patients [87] and

externally validated in oropharyngeal cancers [88]. Table 3 shows

recent radiomics publications on tumor staging and prognosis.

Prediction of treatment response. Radiomics features could be used

to predict which patients would respond to a treatment regimen.

Table 4 summarizes notable publications. In glioblastomas, a robust

association between radio-phenotypes and gene expression has been

shown, including a link with epidermal growth factor receptor

(EGFR) overexpression [64, 89]. Radiomics features have been

shown to stratify treatment outcomes from angiogenic therapy in re-

current glioblastomas [90]. EGFR mutation [91] and response

to Gefinitib [92] were also reflected in a combination of features in

lung cancers. With the rapid rise in targeted therapy, it is worthwhile

to continue discovering radiogenomic associations that may influ-

ence management. An imaging surrogate to could aid patient selec-

tion and avoid unwarranted expense and toxicities for non-

responders.

In the neoadjuvant chemotherapy setting, a multi-parametric

model in breast MRIs identified non-responders with 84% sensi-

tivity [93], with the goal of developing a computer-assisted pre-

diction solution, which may be more cost–effective than

molecular assessments. In rectal carcinomas, a combination of

radiomics features was seen to be predictive of pathologic

response to neoadjuvant treatment [49]. Studies in other cancer

localizations [94–97] have shown the possibility of assessing

treatment response using imaging markers.

In the advent of immunotherapy, there have been been patients

who experience pseudoprogression (PSPD) [98], which has been

shown to be due to lymphocyte infiltration in and around the

tumor [99]. A study demonstrated that a radiomics signature

from CTs could reflect tumors with increased lymphocytes and

discriminate PSPD from true progression [100], possibly aiding

decision-making for equivocal cases.

Disease monitoring and surveillance. Inflammation leads to post-

treatment reactions that might complicate response evaluation by

imaging. In this context, functional imaging helps differentiate scar

tissue from viable tumor, but equivocal cases remain. Radiomics

can further enhance evaluation. For instance, texture features from

CT images of lung cancer treated with stereotactic ablative body

radiotherapy (SABR) showed that the ground glass appearance (an

area of hazy increased lung opacity through which vessels and bron-

chial structures may still be seen [101]), following SABR predicts re-

currence versus radiation-induced lung injury, which has a similar

radiologic picture [102]. This is particularly useful because lung

cancer typically progresses quickly; hence the decision for salvage

therapy is most valuable if made early, likely providing more treat-

ment options compared with late-detected disease. In addition, a

pilot study on renal cell cancers has demonstrated the possibility of

capturing sub-visual treatment-related imaging changes [103].
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Table 2. Advancements in oncologic diagnosis in radiomics

Tumor type
and imaging
modality

Author,
year

Training/validation
sets (N)

Extracted radiomics features Feature selection and
statistical learning

Clinical utility for diagnosis

Lung cancer

Low dose CT

Liu,

2016 [46]

T: 102

V: 70

24 semantic radiological traits

(location, size, shape, margin,

density, internal features, ex-

ternal features, associated

findings) used to create a lin-

ear classification model

Accuracy/AUROC,

Hold-out cross-validation,

Bootstrap, Youden J index

Radiological image traits are

useful in predicting malig-

nancy in lung nodules

(accuracies ranging from 70%

to 77%)

Lung cancer

(NLST dataset)

CT

Hawkins,

2016 [42]

malignant: 104(T) þ
92(V); benign:

208(T) þ 196 (V)

219 three-dimensional features

(size, shape, location, and

texture matrices)

Hierarchical learning frame-

work—multi-scale con-

volutional neural

networks, random forest

classifier

Radiomics features are effect-

ive in the prediction of ma-

lignant versus benign lung

nodules with accuracies of

80% and 79%.

Lung cancer

CE CT

Wu W.,

2016 [81]

T: 198

V: 152

440 radiomic features (voxel in-

tensity distribution, shape,

texture matrices)

Correlation-based feature

elimination and univari-

ate feature selection. 24

feature selection and 3

classification methods

tested

Radiomics features predict

NSCLC histology (highest

achieved AUC ¼ 0.72)

Lung cancer

(LIDC-IDRI dataset)

CT

Kumar,

2015 [41]

93 patients,

42 340 lesions

T: 34 295

V: 3810

abstract imaging-based fea-

tures learned from a deep

convolutional neural network

learning architecture

Deep convolutional neural

network; binary decision

tree classifier

Method used outperforms the

state-of-the art approach

for lung nodule benign ver-

sus malignant classification

(accuracy 77%, sensitivity

79%, specificity 76%)

Lung cancer

(LIDC-IDRI

dataset)

CT

Shen,

2015 [43]

T: 1100 nodules

V: 275 nodules

(with augmentation)

Learned classifiers from the

neural network algorithm

Multi-scale convolutional

neural networks

The convolutional neural net-

work method used showed

86% accuracy for pulmon-

ary nodule classification

Lung adenocar-

cinoma

High resolution CT

Maldonado,

2013 [82]

T: 54 nodules

V: 86 nodules

Computer-aided nodule assess-

ment and risk yield

(CANARY): representative ex-

emplars of the spectrum of

solid and ground glass com-

ponents of nodules

Affinity propagation (un-

supervised clustering),

Multinomial logistic regres-

sion, nonparametric

Spearman correlation

CANARY can noninvasively

characterize pulmonary nod-

ules of the adeno-carcinoma

spectrum, with the exemplar

distribution within each nod-

ule correlating well with the

proportion of histologic tissue

invasion (P < 0.0001)

Lung cancer

(LIDC-IDRI dataset)

CT

Zinovev,

2011 [80]

914 instances

T: 90%

V: 10%

63 2D low-level image features

from four categories: shape,

texture, intensity, size

Multiple-label belief deci-

sion trees,

fivefold cross validation

Multiple-label classification

algorithms are an appropriate

method of representing the

diagnoses of radiologists on

lung CT scans (AUC 69%)

Prostate cancer

MRI

Fehr,

2015 [120]

T: 147 First- and second-order texture

statistics from intensity distri-

bution(mean, SD, skew-

ness,kurtosis); Haralick

features (energy, entropy,

correlation, homogeneity,

contrast)

Oversampling approach,

support vector machine

Texture features predicts be-

nign versus malignant pros-

tate lesions and Gleason

score of malignant tumors,

with a better accuracy

(93%) than using diffusion

MRI alone

CT, computed tomography scan; MRI, magnetic resonance imaging; CE, contrast-enhanced; AUROC, area under the receiver-operating characteristic;

NLST, national lung cancer screening trial; LIDC-IDRI, Lung Image Database Consortium; SD, standard deviation; AUC, area under the curve.
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Table 3. Recent radiomics works in staging and prognosis

Tumor type
and imaging
modality

Author,
year

Training/
validation
sets (N)

Extracted radiomics features Feature selection and statis-
tical learning

Utility and significance

NSCLC and

HNSCC

CE CT

Aerts,

2014 [4]

T: 31, 21, 422

V: 225, 136, 95, 89

440 radiomics image features (in-

tensity, shape,texture, multi-

scale wavelet)

Selection of the most stable

variables (n ¼ 100), un-

supervised clustering;

Friedman test, bootstrap

approach

Significant associations were

found between imaging fea-

tures and tumor stage and

overall survival, with the

radiomics signature having a

CI¼ 0.65 (NSCLC), CI¼ 0.69

(HNSCC)

NSCLC and

HNSCC

CE CT

Parmar,

2015 [87]

T: Lung - 422

HN - 136

V: Lung 2 - 225

HN2 - 95

440 radiomics features (tumor in-

tensity, shape, texture,

wavelet)

Consensus clustering Significant agreement in the

clusters between training and

validation sets was seen.

Features were associated

with stage (lung AUC ¼ 0.61,

H&N AUC ¼ 0.77), HPV status

(H&N AUC ¼ 0.58) and prog-

nosis (lung AUC ¼ 0.60, H&N

AUC ¼ 0.68).

Lung adeno-

carcinoma

CT

Coroller,

2015 [84]

T: 98

V: 84

635 radiomics features

(intensity, shape, texture,

Laplacian of Gaussian and

Wavelet filtered)

Bootstrapping, Benjamini–

Hochberg correction

Imaging features aid in the

identification of patients at

risk of developing distant

metastases (CI¼ 0.61), facili-

tating individual treatment

decisions

Lung adeno-

carcinoma

CE CT

Grove,

2015 [61]

T: cohort 1 ¼ 61;

cohort 2 ¼ 47

V: 32 (RIDER

test–retest)

shape complexity (convexity) and

intratumoral density variation

(entropy ratio)

Concordance correlation co-

efficient, Dynamic Range,

correlation matrix

Increasing tumor entropy and

lower convexity are associ-

ated with overall survival,

even after adjustment for

tumor stage.

Glioblastoma

Multiforme

CE MRI

Kickingereder,

2016 [90]

T: 112

V: 60

4842 total

17 first-order

features, 9 volume and shape fea-

tures, 162 texture features

Supervised principal compo-

nent analysis,

Cox proportional hazard

models,

Integrated Brier scores

Radiomics-based classification

of recurrent glioblastoma

permits the prediction of

treatment outcome to anti-

angiogenic therapy through

PFS (P ¼ 0.030) and OS

(P ¼ 0.001).

Colorectal cancer

CE CT

Huang,

2016 [85]

T: 326

V: 200

150 texture features, 24 feature-

based radiomics signature;

Radiomics nomogram

LASSO; Multi-variate binary

logistic regression, nomo-

grams and calibration

plots

Radiomics nomogram predicts

lymph node metastases

(CI¼ 0.78), beneficial in pre-

treatment decisions.

Colorectal cancer

CE CT

Liang,

2016 [86]

T 286

V: 208

150 texture features;

16-feature-based radiomics

signature

LASSO;

the radiomics score

Texture features can be utilized

in preoperative staging of

colorectal carcinomas

(AUC ¼ 0.71).

Oropharyngeal

Squamous cell

Cancer (OPSCC)

CT

Leijenaar,

2015 [88]

V: 542 radiomics signature (energy,

Compactness,

Gray level non-uniformity,

Wavelet)

Cox proportional hazards

model

Results show the applicability as

a prognostic index of a radio-

mics signature which was

trained in lung and H&N and

cancer validated well in an

external cohort of OPSCC

(CI¼ 0.63)

Breast Cancer

(TCGA -TCIA

dataset)

CE MRI

Li,2016 [121] T: 84 38 CEIPs (size, shape, morph-

ology, enhancement texture,

kinetic curve, enhancement-

variance kinetics)

Leave one-case-out cross-val-

idation analysis with logis-

tic regression

CEIPs predict the recurrence risk

as assessed by Oncotype Dx,

PAM50 or Mammaprint

(AUCs from 0.55 to 0.88)

CT, computed tomography scan; MRI, magnetic resonance imaging, CE, contrast-enhanced; TCGA-TCIA, The Cancer Genome Atlas-The Cancer Imaging

Archive; NSCLC, non-small cell lung cancer; HNSCC, head and neck squamous cell carcinoma; CI, concordance index; AUC, area under the curve;

LASSO, least absolute shrinkage and selection operator; PFS, progression-free survival; OS, overall survival; CEIPs, computer-extracted image

phenotypes.
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Table 4. Publications on the prediction of treatment response through radiomics

Tumor type
and imaging
modality

Author,
year

Training/
validation
sets (N)

Extracted radiomics features Feature selection and statis-
tical learning

Utility and significance

Lung adeno-

carcinomas

High resolution CT

Aerts,

2016 [92]

T: 47

V: 31 (Rider

test–retest)

183 initial features,

11 independent features used

(volume, Gabor Energy,

Sigmoid Function, Shape

Index, Boundary Radius,

GLCM, Laws Energy)

Spearman rank statistic,

AUC, intraclass correlation

coefficient

Radiomics features predict EGFR

mutation status and associ-

ated response to Gefitinib at

baseline (AUC¼ 0.67) and in

change in pre- and post

treatment (AUC¼ 0.74–0.91)

CT scans of NSCLC

Lung adeno-

carcinomas

CE CT

Y Liu,

2016 [91]

T: 385 Semantic radiologic features

(location, size, shape, margin,

attenuation, internal, en-

hancement, external, associ-

ated findings) assessed by 3

radiologists

Multiple logistic regression

analyses,

backward elimination method,

AUROC

CT features of lung adeno-car-

cinomas can be an image bio-

marker for EGFR mutation

status, with the use of clinical

variables combined with CT fea-

tures (AUROC¼ 0.778) being

superior to use of clinical vari-

ables alone (AUROC¼ 0.690)

NSCLC

PET

Cook,

2015 [95]

T: 47 First-order and high-order pri-

mary tumor texture features

Cox and logistic regression

analyses

Reduced quantitative hetero-

geneity features (percentage

change in entropy) in PET

scans are associated with

time to disease progression

(P ¼ 0.03) and treatment

response (P ¼ 0.01)

NSCLC

CE CT

Mattonen,

2015 [102]

T: 22 Mean density, first-order tex-

ture, energy, entropy, correl-

ation, inverse difference

moment, inertia, cluster

shade, and cluster

prominence

Independent samples t-test

with unequal variances,

Kolmogorov–Smirnov test,

Wilcoxon signed rank test

linear Bayes normal classifier,

Spearman rank correlation

coefficients

First and second-order texture

features can predict even-

tual cancer recurrence

based on CT images

acquired within 5 months

of SABR treatment (accura-

cies of 73%–77%)

Glioblastoma

Multiforme

(TCGA -TCIA

dataset)

CE MRI

Lee,

2015 [89]

T: 65 36 spatial habitat diversity (re-

gions with distinctly different

intensity characteristics) fea-

tures based on pixel abun-

dances w/in ROIs

Overall coefficient of variation;

symbolic regression method

Features had association with

overall survival (AUC ¼
0.74) and EGFRþ (AUC ¼
0.85) status and could be a

useful prognostic tool for

MRIs of patients with

gloiblastomas

Breast cancer

CE MRI

Michoux,

2015 [93]

T: 69 20 texture, 3 kinetic, BI-RADS

and biologic parameters

Logistic regression model, k-

means clustering algorithm

based on a nearest-cluster

approach; leave-one-out

cross validation

Radiomics features predicts

response to neoadjuvant

chemotherapy (accuracy ¼
68%), may be used in treat-

ment decision-making

Breast cancer

CE MRI

Ahmed,

2012 [94]

T: 100 Texture features based on co-

occurrence matrices

(Haralick features, cluster

shade, cluster prominence)

Mann–Whitney, t-tests

Categorized according to their

chemotherapeutic response

and histopathology

Certain texture parameters are

significantly associated with

treatment response (best-

performing features P ¼
0.039–0.048) and tumor

histology (best-performing

features P ¼ 0.001–0.012)

Rectal cancer

CE MRI

Nie,

2016 [49]

T: 48 103 imaging features (texture,

shape, histogram)

Mean-value based and voxel-

ized analysis techniques;

three-layer perceptron artifi-

cial neural network, feed-for-

ward-back-propagation

learning

Features reflect response to

neoadjuvant therapy (AUC

¼ 0.71–0.79 in voxelized

analysis) and could influ-

ence treatment plans

Continued
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Perspectives related to the effective

translation of the radiomics biomarkers

into the clinic

There is convincing evidence that radiomics could be an invalu-

able tool in revolutionizing oncology. Significant progress has

been made, but further improvements are imperative to achieve

routine utilization from bench to bedside.

Standardization and the perspective relative to
molecular biomarkers

Radiomics literature is constantly growing, and we predict that it

will follow the curve of the molecular biomarkers as interests and

funding increase (Figure 2A). At present, however, the existing

level of evidence is insufficient (Figure 3). There are notable dif-

ferences in terms of sample size, methodology, performance met-

rics, and clinical utility; reiterating that improvements are

essential.

As investigators have learned from discovery of biomarkers

[104, 105], there are pitfalls to be avoided. In the same way as the

REporting recommendations for tumour MARKer prognostic stud-

ies (REMARK) [106] or the Minimum information about a

microarray experiment (MIAME) [107] guidelines, recommenda-

tions specific to radiomics are necessary. In reporting, key elem-

ents should be sufficiently detailed and made available to allow

comparisons and validation: (i) raw imaging data including ac-

quisition parameters, (ii) ROIs, (iii) radiomics features and the

extraction software, methods, formulae used, and (iv) statistical

learning methods. Meriting attention is the non-standardized

names of extracted features, such that two publications might dis-

cuss a feature with the same formula/definition but call these

differently.

The recently published roadmap for imaging biomarkers [108]

is a notable advancement, showcasing key recommendations for

clinical translation of radiomics. Also admirable are large initia-

tives aiming to develop automatic segmentation solutions such as

the Google-National Health Service partnership DeepMind

Health project [109]. Another is the Grand Challenges in

Biomedical Image Analysis [110], with goals of developing algo-

rithms for specific problems such as the Lung Nodule Analysis

(LUNA) Challenge [111], a large-scale automatic nodule detec-

tion with 888 patients and The Digital Mammography (DREAM)

Challenge [112] aiming to improve predictive accuracy of digital

mammography with over 640 000 images.

Table 4. Continued

Tumor type
and imaging
modality

Author,
year

Training/
validation
sets (N)

Extracted radiomics features Feature selection and statis-
tical learning

Utility and significance

Rectal cancer

PET

Bunds-

chuh,

2014 [97]

T: 27 First-order primary tumor tex-

ture features (coefficient of

variation, skewness, kurtosis)

ROC analysis, Youden index Texture features reflect re-

sponse to neoadjuvant che-

moradiotherapy and

prognostic capability for

disease progression (AUC ¼
0.89 for the coefficient of

variation feature)

Renal Cell

Cancer

CT

Goh,

2011 [96]

T: 39 First-order statistics (Entropy

and uniformity), TEXRAD

Cox regression model Heterogeneity biomarkers are

associated with treatment

response and time to pro-

gression (AUC ¼ 0.71); with

prediction rates better than

standard response criteria

(RECIST, Choi)

Renal Cell

Cancer (RCC)

integrated

PET/MRI

Antunes,

2016 [103]

2

test/retest

scans þ mid

treatment scan

66 radiomic features (raw T2w

signal, post-processed T2w,

30 post-processed T2w tex-

tures, raw ADC map, 30 ADC

textures, SUV, 2 PET textures)

Cox proportional hazards

model

SUV and both T2w and ADC

texture features appear to

be able to capture subvi-

sual TKI treatment-related

changes in RCCs, with the

highest-ranked radiomics

feature yielding a normal-

ized percentage change of

63% within the RCC region

CT, computed tomography scan; MRI, magnetic resonance imaging; PET, Positron emission tomography; CE, contrast-enhanced; TCGA-TCIA, The

Cancer Genome Atlas-The Cancer Imaging Archive; NSCLC, non-small cell lung cancer; GLCM, gray level co-concurrence matrix; SABR, stereotactic abla-

tive body radiotherapy; EGFR, epidermal growth factor receptor; AUC, area under the curve; T2, Weighted MRI; ADC, apparent diffusion coefficient;

AUROC, area under the receiver operating characteristic.
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To ensure robustness and dissemination of radiomics-based

predictive tools, standardization of imaging protocols and fea-

ture calculations is ideal, but seldom attainable [10, 113].

Imaging carried out at different centers leads to bias [10, 114].

In fact, significant variation of radiomics features was observed

across different CT scans through a phantom experiment [113].

The use of credentialing scanners, careful study design, noise

reduction, and statistical analyses adjusted to account for

unwanted effects are possible solutions. Table 5 highlights the

current challenges and corresponding recommendations in

radiomics.

Actual data access

Improving data management is challenging for a number of rea-

sons including (i) administrative (manpower), (ii) ethical (pa-

tient privacy), and (iii) personal/institutional (intellectual

IV

III

II

I

Level of evidence

Radiomics

biomarkers

Conventional biomarkers

Performance metrics

Sample size

>10 000

5000-10 000

1000-5000

500-1000
250-500

100-250

<100
No validation set

Strong*

Average*

Poor*

Lung cancer CT
screening program
NLSTRT 2011

Mammaprint®

Piccart, 2016

Her2 neu, 2002

Oncotype DX
Sparano 2015

Immunoscore
Galon 2013

PDL1 expression, 2015

Wu, 2016

Hawkins,
2016

Shen, 2015

Fehr, 2015

Li, 2016 Huang, 2016

Maldonado, 2013

Kumar, 2015

Parmar, 2015

Aerts, 2014

Figure 3. Comparison of key biomarker and radiomics studies. Shown are representative studies in the field of molecular biomarkers and imaging biomarkers, illustrating that the areas
radiomics can be improved on in the future are (i) use of prospective cohorts (ii) increased number of subjects (iii) use of validation sets. Performance Metrics (Concordance indices/ Area under
the curve): Strong >80, Average: 60–80, Poor <60.
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property). One successful undertaking is TCIA [115], through

which investigators have access to robust anonymized imaging

data in easily utilizable DICOM format.

Researchers should be encouraged to submit data to a centralized

online radiomics repository akin to the Gene Expression Omnibus

[116] for microarrays. A standardized non-software dependent for-

mat of storing and annotating data will facilitate multi-platform

utilization. These will not only be useful before starting research pro-

jects, but also during and after; ensuring the integrity and availability

of information. These must allow incorporation of image features,

annotations, medical information, and genetic data in order to cre-

ate prognostic and predictive models correlating imaging with gen-

etic phenotypes and clinical outcomes. It is critical that the fidelity of

the data is maintained and access is regulated, for which competent

system administrators are mandatory. These are big steps, but we be-

lieve they are essential for the advancement of the discipline.

Forming a multi-national consortium may be a prudent solution,

some of whose functions would be to (i) draft guidelines on data col-

lection, anonymization, and sharing, (ii) standardize reporting of

radiomics studies.

Improving multi-disciplinary network and
dissemination of radiomics

Significant efforts have been made to address these issues. The

National Cancer Institute, in cooperation with other societies like

the Canadian Institute of Health Research, Cancer Research United

Kingdom and American College of Radiology Imaging Network,

have supported initiatives, including the Quantitative Imaging

Network (QIN), to promote the development of QI methods, anno-

tated image databases, and QI standards [117]. Other significant ef-

forts include the Quantitative Imaging Biomarkers Alliance (QIBA),

a critical component of US’ Cancer Moonshot initiative [118], and

the Euregional Computer Assisted Theragnostics project

(EuroCAT) [119], whose goals include enhancing data sharing and

facilitating patient recruitment in clinical trials. More initiatives are

necessary, with multi-disciplinary working groups that include on-

cologists, radiologists, medical physicists, applied mathematicians,

and computer scientists, to improve the field and educate people on

its use such that it can become a reliable part of a decision support

system in oncology. Radiomics has been gaining ground in terms of

exposure and interest in recent scientific congresses, with the num-

ber of publications per year almost doubling in the last three and al-

most tripling in the last five years (197 in 2015, an increase of 77%

Table 5. Issues and solutions for radiomics studies

Step Pitfall Solution

Image acquisition and

reconstruction

Differences in acquisition parameters Need for standardized protocols adapted to each modality

(CT, PET, MRI); and comprehensive description of the par-

ameters being used.

Exclusion of images with outlier acquisition parameters.

Contrast enhancement protocols vary across machines and

across patients (sarcopenia, adipose level, heart rate, etc.).

Standardized control ROIs such as muscle

Image segmentation Intra/inter-observer variability Semi-automatic segmentation with human correction/

improvement

Time consuming contouring methods Development of (semi-)automated contouring methods

(ideally open source)

Feature extraction Large range of voxel intensities and image noise Filtering procedure aiming to preserve the signal and re-

duce the unwanted noise

Different discretization methods producing different results Using fixed bin sizes (absolute discretization)

Volume dependence Testing for correlation between radiomics variables and

volume

Statistical learning Large number of features, small population (p� n) resulting

into a high probability of false positives results and overfit-

ting, the ‘curse of dimensionality’

Bonferroni, Benjamini–Hochberg corrections

Cross-validation

Dimensionality reduction through supervised and unsuper-

vised (PCAa, ICAb, ISOMAP, LLEc) techniques

Feature selection and classification uncertainties, susceptibil-

ity to human error

Advanced machine learning approaches such as neural

networks

General Reproducibility is limited Publications should include access to raw data, segmented

ROIs, methods used for feature extraction

A repository should be initiated containing imaging data,

radiomics features, extraction software, methods, formulae

and statistical learning methods

aPrinicipal component analysis.
bIndependent component analyses.
cLocally linear embedding.
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since 2013 and 186% since 2011) (Figure 2A). This is translated in

increased exposure of radiomics in current radiology meetings (e.g.

RSNA) and in major oncology meetings (e.g. ASCO, ESMO, AACR,

ASTRO). This is a formidable start but efforts need to be increased.

Discussion

Conclusion

Imaging biomarkers constructed from quantitative image analysis

have great potential to advance precision medicine and to enhance

cancer biology knowledge. As radiomics cements its position in

translational cancer research to attain utilization at bedside, we an-

ticipate radiomics data being integrated and analyzed with gen-

omics, proteomics and other -omics; providing information

invaluable in personalized medicine. Radiomics will certainly pro-

gress further with the advent of more imaging data, better algo-

rithms, and availability of other data types such as coherent

datasets integrating imaging, clinical, and genomic information.
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